Polynomdivision

Beispiel:
$$(x^3 + 2x^2 - 10x + 25) : [x+5]$$

in Worten: Dividiere das Polynom $(x^3 + 2x^2 - 10x + 25)$ (im Folgenden auch p(x) genannt) durch das Polynom [x + 5] als Divisor d(x). Das heißt: Suche als Quotient ein Polynom q(x), das mit [x + 5] multipliziert p(x) ergibt, das also $p(x) = [x + 5] \cdot q(x)$ erfüllt.

Erklärung: Damit q(x) mit [x+5] ausmultipliziert p(x)'s höchste Potenz x^3 ergibt, muss q(x) mit $x^3: x$, also x^2 als höchstem Summanden beginnen. Dieses x^2 ergibt allerdings beim Ausmultiplizieren mit [x+5] neben dem gewünschten x^3 auch $5x^2$, was gegenüber dem in p(x) vorkommenden $2x^2$ um $3x^2$ zu groß ist. Die noch zu bestimmenden weiteren Summanden in q(x) müssen also beim Ausmultiplizieren als höchsten Term $-3x^2$ und die noch ausstehenden Glieder -10x+25 liefern.

Damit der nächste Summand von q(x) mit [x+5] ausmultipliziert den höchsten noch nicht abgedeckten Term $-3x^2$ liefert, muss er $-3x^2$: x=-3x lauten. Dieses -3x ergibt allerdings neben $-3x^2$ auch noch -15x, also gegenüber p's Glied -10x um 5x zu wenig. Die noch zu bestimmenden weiteren Summanden in q(x) müssen also beim Ausmultiplizieren als höchsten Term 5x und das noch ausstehende Glied +25 liefern.

Damit der nächste Summand von q(x) mit [x+5] ausmultipliziert den höchsten noch nicht abgedeckten Term 5x liefert, muss er 5x : x = +5 lauten. Dieses +5 ergibt neben 5x "zufällig" auch noch die richtige +25.

Wenn eine Polynomdivision nicht aufgeht, bleibt anstelle der 0 ein Rest-Polynom r(x), dessen Grad kleiner als der von q(x) ist, und mit dem gilt: $p(x) = d(x) \cdot q(x) + r(x)$. Dies ist analog zur Grundschulmäßigen Division "17: 5 = 3 Rest 2" mit $17 = 5 \cdot 3 + 2$.